If it's not what You are looking for type in the equation solver your own equation and let us solve it.
D( x )
x = 0
x^2 = 0
x = 0
x = 0
x^2 = 0
x^2 = 0
1*x^2 = 0 // : 1
x^2 = 0
x = 0
x in (-oo:0) U (0:+oo)
3-(1/x)-(6/(x^2)) = 0
3-x^-1-6*x^-2 = 0
t_1 = x^-1
3-6*t_1^2-1*t_1^1 = 0
3-6*t_1^2-t_1 = 0
DELTA = (-1)^2-(-6*3*4)
DELTA = 73
DELTA > 0
t_1 = (73^(1/2)+1)/(-6*2) or t_1 = (1-73^(1/2))/(-6*2)
t_1 = (73^(1/2)+1)/(-12) or t_1 = (1-73^(1/2))/(-12)
t_1 = (73^(1/2)+1)/(-12)
x^-1-((73^(1/2)+1)/(-12)) = 0
1*x^-1 = (73^(1/2)+1)/(-12) // : 1
x^-1 = (73^(1/2)+1)/(-12)
-1 < 0
1/(x^1) = (73^(1/2)+1)/(-12) // * x^1
1 = ((73^(1/2)+1)/(-12))*x^1 // : (73^(1/2)+1)/(-12)
-12*(73^(1/2)+1)^-1 = x^1
x = -12*(73^(1/2)+1)^-1
t_1 = (1-73^(1/2))/(-12)
x^-1-((1-73^(1/2))/(-12)) = 0
1*x^-1 = (1-73^(1/2))/(-12) // : 1
x^-1 = (1-73^(1/2))/(-12)
-1 < 0
1/(x^1) = (1-73^(1/2))/(-12) // * x^1
1 = ((1-73^(1/2))/(-12))*x^1 // : (1-73^(1/2))/(-12)
-12*(1-73^(1/2))^-1 = x^1
x = -12*(1-73^(1/2))^-1
x in { -12*(73^(1/2)+1)^-1, -12*(1-73^(1/2))^-1 }
| 1/5divided1/15 | | 10-(4x+1)=8 | | 7x-1=mx-1 | | -2(5y-1)-y=-4y+12 | | 3.7x=2.4x+7.8 | | 3x+(x+6)=2x-(-12) | | 5m^3=-6655 | | 1/4x^2-1/8x-3/4=0 | | 7(2x+8)-10=32 | | 9(p+4)=9(-p+6) | | 4(s)5=54 | | -3x-14x=68 | | z^2=2-12 | | 4x+19=9x-6 | | 2w+5=-14w+4(4w-10) | | 2w+5=-14+4(4w-10) | | 1-2x+4x=-11 | | -3(4x-1)+4=13 | | 0.13x+0.5(x-5)=0.01(2x-3) | | Z^7=4Z^5 | | 3/4c+6=18 | | x^4+4x^3=5x^2 | | 15=3-6y | | (x+12)(x+6)=0 | | 2x^3+8x-24x=0 | | 4(5)+x=54 | | kx^2-px+q=0 | | 1/3x-7=-2/3x-9 | | 2(x+4)-(5x-7)= | | 9xsquared=3x-25 | | (c-3)(c-3)=49 | | 17+2(6-3)-3*4= |